

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 9095-9097

## Unexpected 1,2,3-triazole formation in the reaction of diethylaluminum azide with $\alpha'$ -amino- $\alpha$ , $\beta$ -unsaturated ketones

Ilaria Adamo, Fabio Benedetti,\* Federico Berti, Giorgio Nardin and Stefano Norbedo

Dipartimento di Scienze Chimiche, Università di Trieste, via Giorgieri 1, 34127 Trieste, Italy Received 25 July 2003; revised 7 October 2003; accepted 13 October 2003

**Abstract**—4-Acyl-1H-1,2,3-triazoles are formed from diethylaluminum azide and  $\alpha'$ -(N,N-dibenzylamino)- $\alpha$ , $\beta$ -unsaturated ketones by [3+2] cycloaddition of azide, followed by 1,5 hydride transfer to the  $\beta$  carbon of the triazoline side chain and fragmentation of the tertiary amino group promoted by coordination of the latter to the Lewis acid. The structure of a triazole product is confirmed by X-ray crystallography.

© 2003 Elsevier Ltd. All rights reserved.

We have recently shown that highly stereoselective conjugate addition of cyanide to chiral  $\alpha'$ -(N,N-dibenzylamino)- $\alpha$ , $\beta$ -unsaturated ketones 1 can be achieved using Nagata's reagent (Et<sub>2</sub>AlCN) as cyanide donor.¹ We have proposed that the reaction takes place by chelation of an aluminum species between the carbonyl and the dibenzylamino group which directs attack of the incoming nucleophile to the less hindered si face of the double bond.

Prompted by this result, and based on a previous report describing the conjugate addition of diethylaluminum azide to  $\alpha,\beta$ -unsaturated carbonyl compounds,<sup>2</sup> we decided to investigate the reaction of the same  $\alpha$ ,  $\beta$ -unsaturated aminoketones 1 with Et<sub>2</sub>AlN<sub>3</sub>. We thus hoped to obtain a stereoselective 1,4-azidation of aminoketones 1 in a similar fashion to the reaction shown in Scheme 1. However, when the  $\alpha,\beta$ -unsaturated aminoketone  $1a^1$ was reacted with Et<sub>2</sub>AlN<sub>3</sub>, obtained in situ from diethylaluminum chloride and sodium azide,<sup>3</sup> no linear adduct 3a was detected. The only product isolated was the triazole 4a in 41% yield (Scheme 1). The latter derives from a [3+2] cycloaddition of azide to the double bond followed by aromatization and loss of the dibenzylamino group. The structure of compound 4a was unambiguously confirmed by a X-ray analysis (Fig. 1).4

1,3-Dipolar cycloaddition of azides and acetylenes is a classical method for the synthesis of 1*H*-1,2,3 triazoles.<sup>5</sup>

*Keywords*: [3+2]cycloaddition; diethylaluminum azide; hydride transfer; 1*H*-1,2,3-triazole.

[3+2] Cycloaddition of azides to activated alkenes proceeds in a similar fashion giving  $\Delta^2$  1,2,3-triazolines which can then be aromatized under oxidative conditions.<sup>6</sup> Triazoles can also be obtained by the cycloaddition of azides and electron deficient alkenes with a suitable leaving group positioned on the double bond.<sup>6,7</sup> While both organic azides and metal azides, or hydrazoic acid, can be used in the cycloaddition with alkynes to obtain 1-substituted triazoles and the parent unsubstituted compounds, respectively, the corresponding reaction with alkenes is limited to organic azides,<sup>7</sup> as 1,4-conjugate addition and formation of linear

R,R' = a: iPr,Me; **b**: Bn,Me; **c**: Bn,Bn; **d**: Bn,iPr

Scheme 1. Diethylaluminum cyanide addition to  $\alpha,\beta$ -unsaturated aminoketones.

<sup>\*</sup> Corresponding author. Tel.: +39-040-5583919; fax: +39-040-5582402; e-mail: benedett@units.it

Figure 1. X-Ray crystal structure of triazole 4a showing the crystallographic numbering scheme.

Bn<sub>2</sub>N 
$$\stackrel{R}{\longrightarrow}$$
  $\stackrel{Et}{\longrightarrow}$   $\stackrel{Bn}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{R}{\longrightarrow}$   $\stackrel{N=N}{\longrightarrow}$   $\stackrel{N$ 

**Scheme 2.** [3+2] Cycloaddition of diethylaluminum azide and  $\alpha,\beta$ -unsaturated aminoketones 1.

**Table 1.** Yields of triazoles **4** from the reaction of enones **1** and diethylaluminum azide

| Triazole | R    | $\mathbf{R}'$ | Yield (%)         |
|----------|------|---------------|-------------------|
| 4a       | i-Pr | Me            | 41ª               |
| 4b       | Bn   | Me            | 37 <sup>a</sup>   |
| 4b<br>4c | Bn   | Bn            | $40^{\mathrm{a}}$ |
|          | Bn   | i-Pr          | 10 <sup>a</sup>   |
| 4d<br>4e | Ph   | Me            | b                 |

<sup>&</sup>lt;sup>a</sup> Remainder was a mixture of unidentified products.

adducts is generally preferred with azide ions and hydrazoic acid.<sup>8</sup> The formation of triazoles **4** from alkenes **1** (Scheme 1) is an exception to this general pattern of reactivity.

Based on the established dipolar reactivity of azides, the mechanism shown in Scheme 2 can be proposed for the reaction between  $\alpha,\beta$ -unsaturated ketones 1 and diethylaluminum azide.

[3+2] Cycloaddition of 1 and Et<sub>2</sub>AlN<sub>3</sub> leads, either directly or after reorganization of the initial adduct, to the intermediate 5, in which the metal is chelated between the triazoline N-1 and the dibenzylamino group. In 5, the two rings are optimally aligned for an intramolecular migration of hydride from the triazoline C-4 to the  $\alpha$ -carbon with displacement of the N,Ndibenzylamino group, activated by complexation with aluminum. This leads to the formation of the triazole 6, which then tautomerizes to 4. A similar mechanism is likely to operate in the cycloaddition of phenylazide to  $\alpha,\beta$ -unsaturated epoxyketones in which reductive ring opening of the epoxide, presumably by hydride migration from the β-carbon, is reported to partially accompany aromatization of the triazoline adduct.9 Spontaneous aromatization of triazolines to triazoles, on the other hand, is exceedingly slow at room temperature.10 Consistent with the proposed mechanism, dibenzylamine is isolated, after aqueous workup, in equimolar amount to triazoles 4.

In order to assess its generality, the same reaction was carried out on several substrates  $(1a-e)^{11}$  with different substituents R, R' (Scheme 1). The results collected in Table 1 indicate that the reaction is sensitive to the substituents: triazoles 4a-c are the main products in the reaction with alkenes 1a-c, while 4d is formed only in minor amounts from substrate 1d, and no triazole 4e could be detected in the reaction of 1e. In the latter case the amino ketone resulting from 1,4-addition of an ethyl group to the enone was the main reaction product, as a 1:1 mixture of diastereoisomers.

Triazolines deriving from the [3+2] cycloaddition of azides to electron-deficient alkenes have been reported to be in equilibrium with the corresponding diazo amines (open chain tautomers) which, in turn, may further react by several pathways. <sup>14</sup> This may explain the formation of a number of unidentified products, accompanying triazoles **4a**–**d**.

## Acknowledgements

Support by FIRB (Programma Strategico Post Genoma, grant RBNE017F8N) and the CNR (Agenzia 2000, progetto giovani) is gratefully acknowledged.

## References

- Benedetti, F.; Berti, F.; Garau, G.; Martinuzzi, I.; Norbedo, S. Eur. J. Org. Chem. 2003, 1973–1982.
- Chung, B. Y.; Park, Y. S.; Cho, I. S.; Hyun, B. C. Bull. Korean Chem. Soc. 1988, 9, 269–270.
- 3. Benedetti, F.; Berti, F.; Norbedo, S. *Tetrahedron Lett.* **1998**, *39*, 7971–7974.
- 4. Crystallographic data (excluding structure factors) for the structure in this paper, have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 215076. Copies of the data can be obtained, free of charge, on application to

<sup>&</sup>lt;sup>b</sup> 1-Dibenzylamino-4-methyl-1-phenylhexan-2-one (from addition of an ethyl group to **1e**) was the main product.

- CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac. uk).
- 5. (a) Katritzky, A. R.; Zhang, Y.; Singh, S. K. Heterocycles 2003, 60, 1225-1239; (b) Molteni, G.; Ponti, A. Chem. Eur. J. 2003, 9, 2770-2774; (c) Blass, B. E.; Coburn, K. R.; Faulkner, A. L.; Seibel, W. L.; Srivastava, A. Tetrahedron Lett. 2003, 44, 2153-2155; (d) Tullis, J. S.; VanRens, J. C.; Natchus, M. G.; Clark, M. P.; De, B.; Hsieh, L. C.; Janusz, M. J. Bioorg. Med. Chem. Lett. 2003, 13, 1665-1668. Reviews: (e) Sha, C.-K.; Mohanakrishnan, A. K. In Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds. Azides; John Wiley Interscience: New York, 2003; pp. 623-679; (f) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M., Ed; Pergamon: Oxford, 1991; Vol. 4, pp. 1099-1101; (g) Wamhoff, H. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Ed.; Pergamon: Oxford, 1984; Vol. 5, pp. 689-732; (h) Finley, K. T. The Chemistry of Heterocyclic Compounds; Weissberger, A.; Taylor, E. C., Eds. 1,2,3-Triazoles; Wiley: New York, 1980; Vol. 39.
- Kadaba, P. K.; Stanovnik, B.; Tišler, M. Adv. Heterocyclic Chem. 1984, 37, 217–349.
- For recent examples, see: (a) Peng, W.; Zhu, S. Tetrahedron 2003, 59, 4395–4404; (b) Peng, W.; Zhu, S. J. Fluorine Chem. 2002, 116, 81–86; (c) Zanirato, P. J. Chem. Soc., Perkin Trans. 1 2002, 1420–1425; (d) Freeze, S.; Norris, P. Heterocycles 1999, 51, 1807–1818; (e) Louerat, F.; Bougrin, K.; Loupy, A.; Ochoa de Retana, A. M.; Pagalday, J.; Palacios, F. Heterocycles 1998, 48, 161–170.
- For examples of 1,3-dipolar cycloadditions of N<sub>3</sub><sup>-</sup>/HN<sub>3</sub> to alkenes, see: (a) Tanaka, Y.; Miller, S. I. *J. Org. Chem.* 1972, *37*, 3370–3372; (b) Huisgen, R.; Knorr, R.; Möbius, L.; Szeimies, G. *Chem. Ber.* 1965, *98*, 4014–4021.
- Zvonok, A. M.; Kuz'menck, N. M.; Stanishevskii, L. S. Chem. Heterocyclic Compd. (Russian) 1988, 1022–1027 (Chem. Abstr. 1989, 110, 192549v).
- Le Hetet, G.; Benhaoua, H.; Carrié, R. Bull. Soc. Chim. Belg. 1996, 105, 189–204.

- Benedetti, F.; Miertus, S.; Norbedo, S.; Tossi, A.; Zlatoidzky, P. J. Org. Chem. 1997, 62, 9348–9353.
- 12. Typical procedure: 5.6 mL of a 1 M solution of diethylaluminum chloride in hexane was added to a stirred suspension of sodium azide (472 mg, 7.25 mmol) in 5 mL dry toluene and stirring was continued for 4 h. Enone 1a (600 mg, 1.86 mmol) in 3 mL dry toluene was added and the mixture was stirred for 1 h (48 h for 1c and 1d). NaF (1.65 g) and water (0.7 mL) were added and the mixture was stirred for 30 min and then filtered over a pad of anhydrous sodium sulfate. Solvent evaporation and column chromatography of the residue (ether/petroleum ether 1:1) gave crude 4a.
- 13. **4a**: mp 93–94°C (toluene); <sup>1</sup>H NMR (CDCl<sub>3</sub>; 400 MHz)  $\delta$ : 1.00 (d, J = 6.8 Hz, 6H), 2.29–2.36 (m, 1H), 2.61 (s, 3H), 2.96 (d, J=7.1 Hz, 2H), 11.5 (broad, NH); <sup>13</sup>C NMR (100.4 MHz)  $\delta$ : 10.4, 22.7, 25.1, 48.9, 141.4, 142.0, 196.8. Anal. calcd for  $C_8H_{13}N_3O$  (167.21): C, 57.5; H, 7.84; N, 25.1%. Found: C, 57.3; H, 8.14; N, 25.3%. 4b: mp 106–107°C (toluene):  $^{1}$ H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 2.60 (s, 3H), 3.07 (t, J=7.7 Hz, 2H), 3.45 (t, J=7.7 Hz, 2H), 7.15-7.28 (m, 5H), 11.1 (broad, NH); <sup>13</sup>C NMR (100.4 MHz) δ: 10.4, 29.8, 41.6, 126.2, 128.5 (2C), 140.9, 141.7, 142.5, 195.6. Anal. calcd for  $C_{12}H_{13}N_3O$  (215.25): C, 67.0; H, 6.09; N, 19.5%. Found: C, 66.7; H, 6.03; N, 19.0% **4c**: mp 114–115°C (toluene); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 3.05 (t, J=7.7 Hz, 2H), 3.43 (t, J=7.7 Hz, 2H), 4.36 (s, 2H), 7.2–7.3 (m, 10H); 12.5 (broad, NH); <sup>13</sup>C NMR (100.4 MHz)  $\delta$ : 29.7, 30.9, 41.6, 126.2, 127.2, 128.49, 128.51, 128.9, 129.0, 136.8, 140.9, 141.8, 144.9, 195.2. Anal. calcd for C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O (291.35): C, 74.2; H, 5.88; N, 14.4%. Found: C, 74.0; H, 5.81; N, 14.3%. 4d: mp 106–108°C (toluene); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 1.32 (d, J=7.0 Hz, 6H), 3.07 (t, J=7.7 Hz, 2H), 3.45 (t, J=7.7 Hz, 2H), 3.69–3.72 (m, 1H), 7.15–7.28 (m, 5H); 12.05 (broad, NH);  $^{13}$ C NMR (100.4 MHz)  $\delta$ : 21.4, 25.0, 29.9, 41.8, 126.1, 128.5 (2C), 139.1, 141.1, 141.5, 195.5. HRMS calcd for C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>O: 243.1372. Found: 243.1399.
- (a) Gorup, A.; Kovačič, M.; Kranjc-Škraba, B.; Mihelčič, B.; Simonič, B.; Stanovnik, B.; Tišler, M. *Tetrahedron* 1974, 30, 2251–2256; (b) Stanovnik, B.; Tišler, M.; Polanc, S. *Synthesis* 1977, 491–492; (c) Texier, F.; Carrié, R. *Bull. Soc. Chim. Fr.* 1971, 3642–3648 and references cited therein.